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Variance of OLS estimators

The correct variance estimation procedure is given by the structure of the data

� It is very unlikely that all observations in a dataset are unrelated, but drawn from

identical distributions (homoskedasticity)

� For instance, the variance of income is often greater in families belonging to top

deciles than among poorer families (heteroskedasticity)

� Some phenomena do not affect observations individually, but they do affect

groups of observations uniformly within each group (clustered data)
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OLS inference is generally faulty in the presence of heteroskedasticity



Heteroskedasticity

� Assume

Var(ui |xi ) = σ2
i

� Fortunately, OLS is still useful (β̂ still consistent/unbiased)

� Note that errors are still independent from each other

� The variance of our estimator, β̂1 equals:

Var(β̂1) =

∑n
i=1(xi − x)2σ2

i∑n
i=1(xi − x)2

= (X ′X )−1X ′V (ui |X )X (X ′X )−1

� When σ2
i = σ2 for all i , this formula reduces to the usual form,

σ2∑n
i=1(xi−x)2

= σ2(X ′X )−1



Robust standard errors

� A valid estimator of Var(β̂1) for heteroskedasticity of any form (including

homoskedasticity) is

Var(β̂1) =

∑n
i=1(xi − x)2ûi

2∑n
i=1(xi − x)2

= (X ′X )−1X ′(
n∑

i=1

xix
′
i ûi

2)X (X ′X )−1

which is easily computed from the data after the OLS regression

� As a rule, you should always use “robust standard errors”



Simulations!

l i b r a r y ( sandwich )

a lpha=0 #i n t e r c e p t

Reps=1000 #how many s imu l a t i o n s ?

Nobs=100 #number o f obs

SequenceBetas=seq ( 0 , 1 , 0 . 1 ) #l e t s do d i f f e r e n t b e t a s

F r a c t i o n S i g n i f i c a n t=NULL #f r a c t i o n s i g n i f i c a n t 5\% l e v e l

F r a c t i o n S i g n i f i c a n t r obu s t=NULL #f r a c t i o n s i g n i f i c a n t 5\% l e v e l when u s i n g r obu s t

be taVec to r=NULL #mean e s t ima t o r

be taVec to r r obu s t=NULL #mean e s t ima t o r r obu s t
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Simulations!

f o r ( beta i n SequenceBetas ){
#save the outcomes from the s im u l a t i o n s

beta e s t ima t e=rep (NA, Reps )

beta pva l u e=rep (NA, Reps )

beta e s t ima t e r obu s t=rep (NA, Reps )

beta pva l u e r obu s t=rep (NA, Reps )

X=as . mat r i x ( r u n i f (Nobs ,=5 , 5 ) ) #gene r a t e some x data

f o r ( r i n 1 : Reps ){
#use the DGP to gene r a t e outcome data wi th h e t e r o s k e d a s t i c i t y

Y=a lpha+beta*X+rnorm (Nobs , sd=1)*X

OLS=lm (Y˜X) #e s t ima t e OLS

ResultsOLS=summary (OLS)$ co e f #save r e s u l t s from OLS t a b l e

beta e s t ima t e [ r ]=ResultsOLS [ 2 , 1 ]

beta pva l u e [ r ]=ResultsOLS [ 2 , 4 ]

#Re s u l t s from robu s t OLS : HC1 y i e l d s same r e s u l t s as s t a t a

Re su l t sRobu s t=c o e f t e s t (OLS , vcov = vcovHC (OLS , type = ”HC1” ) )

beta e s t ima t e r obu s t [ r ]= Re su l t sRobu s t [ 2 , 1 ]

beta pva l u e r obu s t [ r ]= Resu l t sRobu s t [ 2 , 4 ]

}
#Save the r e s u l t s f o r the g i v en v a l u e o f beta

F r a c t i o n S i g n i f i c a n t=c ( F r a c t i o n S i g n i f i c a n t , mean ( beta pva lue<0 . 05 ) )

F r a c t i o n S i g n i f i c a n t r obu s t=c ( F r a c t i o n S i g n i f i c a n t robus t , mean ( beta pva l u e robus t<0 . 05 ) )

be taVec to r=c ( betaVector , mean ( beta e s t ima t e ) )

be taVec to r r obu s t=c ( be taVec to r robus t , mean ( beta e s t ima t e r obu s t ) )

}
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Power Curve – Incorrect type-I error from classic OLS, correct from robust SE)

Proportion of times we reject the null at α = 0.05
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Clustered data

� But what if errors are not independent?

� Maybe observations between units in a group are related to each other

� Imagine you randomly assing a treatment at the school level (e.g., extra resources)

� The unobservables of kids belonging to the same school are correlated (e.g.,

teacher quality, recess routines)

� The unobservables of kids in different school are unlikely to be correlated

� Then independence of errors across observations is violated

� But maybe independence holds across schools, just not within schools



Simulations!

C l a s s e s=50 #number o f c l a s s e s or s c h o o l s

S t ud en t sPe rC l a s s=10 #number o f obs pe r s c h o o l s

Reps=1000 #r e p e t i t i o n s

SequenceBetas=seq ( 0 , 1 , 0 . 1 ) #t r y d i f f e r e n t be t a s ( t r ea tment e f f e c t s )

a l pha=0 #i n t e r c e p t

F r a c t i o n S i g n i f i c a n t=NULL #f r a c t i o n s i g n i f i c a n t 5\% l e v e l

F r a c t i o n S i g n i f i c a n t r obu s t=NULL #f r a c t i o n s i g n i f i c a n t 5\% l e v e l when u s i n g r obu s t

be taVec to r=NULL #mean e s t ima t o r

be taVec to r r obu s t=NULL #mean e s t ima t o r r obu s t
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Simulations!

f o r ( beta i n SequenceBetas ){
#save the outcomes from the s im u l a t i o n s

beta e s t ima t e=rep (NA, Reps )

beta pva l u e=rep (NA, Reps )

beta e s t ima t e r obu s t=rep (NA, Reps )

beta pva l u e r obu s t=rep (NA, Reps )

X=as . mat r i x ( r u n i f ( S t ud en t sPe rC l a s s*C l a s s e s ,=5 , 5 ) ) #gene r a t e some x data

f o r ( r i n 1 : Reps ){
Schoks C l u s t e r=rep ( rnorm ( C l a s s e s ) , each=Studen t sPe rC l a s s )

Schoks I n d i v i d u a l=rnorm ( S tuden t sPe rC l a s s*C l a s s e s , sd=1 )

Y=a lpha+beta*X+Schoks C l u s t e r+Schoks I n d i v i d u a l

OLS=lm (Y˜X) #e s t ima t e OLS

ResultsOLS=summary (OLS)$ co e f

beta e s t ima t e [ r ]=ResultsOLS [ 2 , 1 ]

beta pva l u e [ r ]=ResultsOLS [ 2 , 4 ]

#Re s u l t s from robu s t OLS : HC1 y i e l d s same r e s u l t s as s t a t a

Re su l t sRobu s t=c o e f t e s t (OLS , vcov = vcovHC (OLS , type = ”HC1” ) )

beta e s t ima t e r obu s t [ r ]= Re su l t sRobu s t [ 2 , 1 ]

beta pva l u e r obu s t [ r ]= Resu l t sRobu s t [ 2 , 4 ]

}
#Save the r e s u l t s f o r the g i v en v a l u e o f beta

F r a c t i o n S i g n i f i c a n t=c ( F r a c t i o n S i g n i f i c a n t , mean ( beta pva lue<0 . 05 ) )

F r a c t i o n S i g n i f i c a n t r obu s t=c ( F r a c t i o n S i g n i f i c a n t robus t , mean ( beta pva l u e robus t<0 . 05 ) )

be taVec to r=c ( betaVector , mean ( beta e s t ima t e ) )

be taVec to r r obu s t=c ( be taVec to r robus t , mean ( beta e s t ima t e r obu s t ) )

}
16
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Power Curve – Incorrect type-I error from classic OLS and from robust SE)

Proportion of times we reject the null at α = 0.05
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Cluster robust standard errors

� Both classic OLS and robust SE overreject (i.e., they reject the null when its true

more times than we thought at a given level)

� We kneed to allow for arbitrary correlation within group

� Instead of summing over each individual, we first sum over groups

� I’ll use matrix notation as it’s easier for me to explain by stacking the data



Clustered data

� Let’s stack the observations by cluster

yg = xgβ + ug

� The OLS estimator of β is:

β̂ = [X ′X ]−1X ′y

� The variance is given by:

Var(β) = E [[X ′X ]−1X ′ΩX [X ′X ]−1]

20



Clustered data

With this in mind, we can now write the variance-covariance matrix for clustered data

Var(β̂) = [X ′X ]−1
[ G∑
i=1

x ′g ûg û
′
gxg ][X

′X ]−1

where ûg are residuals from the stacked regression

� In STATA: vce(cluster clustervar)

� In R use lfe package



Simulations!

l i b r a r y ( l f e )

C l a s s e s=50 #number o f c l a s s e s or s c h o o l s

S t ud en t sPe rC l a s s=5 #number o f obs pe r s c h o o l s

Reps=1000 #r e p e t i t i o n s

SequenceBetas=seq ( 0 , 1 , 0 . 1 ) #t r y d i f f e r e n t be t a s ( t r ea tment e f f e c t s )

a l pha=0 #i n t e r c e p t

F r a c t i o n S i g n i f i c a n t=NULL #f r a c t i o n s i g n i f i c a n t 5\% l e v e l

F r a c t i o n S i g n i f i c a n t r obu s t=NULL #f r a c t i o n s i g n i f i c a n t 5\% l e v e l when u s i n g r obu s t

F r a c t i o n S i g n i f i c a n t c l u s t e r=NULL #f r a c t i o n s i g n i f i c a n t 5\% l e v e l when u s i n g c l u s t e r
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Simulations!

f o r ( beta i n SequenceBetas ){
#save the outcomes from the s im u l a t i o n s

beta pva l u e=rep (NA, Reps )

beta pva l u e r obu s t=rep (NA, Reps )

beta pva l u e c l u s t e r=rep (NA, Reps )

C l u s t e r I n d i c a t o r=rep ( 1 : C l a s s e s , each=Studen t sPe rC l a s s )

T r ea tmen tC l a s sLev e l=sample ( c ( 0 , 1 ) , C l a s s e s , r e p l a c e=T)

T r e a tmen t I n d i v i d u a l=rep ( Trea tmentC la s sLeve l , each=Studen t sPe rC l a s s )

f o r ( r i n 1 : Reps ){
Schoks C l u s t e r=rep ( rnorm ( C l a s s e s ) , each=Studen t sPe rC l a s s )

Schoks I n d i v i d u a l=rnorm ( S tuden t sPe rC l a s s*C l a s s e s , sd=1 )

Y=a lpha+beta*Tr e a tmen t I n d i v i d u a l+Schoks C l u s t e r+Schoks I n d i v i d u a l

Data=cb ind (Y, T r e a tmen t I nd i v i d ua l , C l u s t e r I n d i c a t o r )

OLS=f e o l s (Y˜ T r e a tmen t I nd i v i d ua l , data=Data ) #e s t ima t e OLS

beta pva l u e [ r ]=summary (OLS)$ c o e f t a b l e [ 2 , 4 ]

#Re s u l t s from robu s t SE

beta pva l u e r obu s t [ r ]=summary (OLS , se=” he t e r o ” )$ c o e f t a b l e [ 2 , 4 ]

#Re s u l t s from c l u s t e r SE

beta pva l u e c l u s t e r [ r ]=summary (OLS , c l u s t e r=C l u s t e r I n d i c a t o r )$ c o e f t a b l e [ 2 , 4 ]

}
#Save the r e s u l t s f o r the g i v en v a l u e o f beta

F r a c t i o n S i g n i f i c a n t=c ( F r a c t i o n S i g n i f i c a n t , mean ( beta pva lue<0 . 05 ) )

F r a c t i o n S i g n i f i c a n t r obu s t=c ( F r a c t i o n S i g n i f i c a n t robus t , mean ( beta pva l u e robus t<0 . 05 ) )

F r a c t i o n S i g n i f i c a n t c l u s t e r=c ( F r a c t i o n S i g n i f i c a n t c l u s t e r , mean ( beta pva l u e c l u s t e r<0 . 05 ) )

}
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Power Curve)

Proportion of times we reject the null at α = 0.05
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The importance of knowing your data

� In real world you should never go with the “independent and identically

distributed” (i.e., homoskedasticity) case. Life is not that simple.

� You need to know your data in order to choose the correct error structure and

then infer the required SE calculation

� At a minimum, use robust standard errors

� If you have aggregate variables, like class size, you need to consinder clustering at

that level



When to cluster?

� Case 1: If sampling follows a two stage process where in the first stage, a subset

of clusters were sampled randomly from a population of clusters, and in the

second stage, units were sampled randomly from the sampled clusters

� Case 2: When clusters of units, rather than units, are assigned to a treatment



When to cluster?

� The results on cluster SE

Var(β̂) = [X ′X ]−1
[ G∑
i=1

x ′g ûg û
′
gxg ][X

′X ]−1

relies on “asymptotic results” based on the number of clusters (G) — not on the

total sample size N

� Can only use cluster SE if number of clusters is “large” (usually over ∼ 40− 50)

� If number of clusters is small consider:

� Collapsing the data at the “cluster” level

� Wild bootstrap

� Randomization inference (if you have an experiment)



When to cluster?

� Two good reads on clustering:

� Cameron, A.C. and Miller, D.L., 2015. A practitioner’s guide to cluster-robust

inference. Journal of human resources.

http://jhr.uwpress.org/content/50/2/317.refs

� Abadie, A., Athey, S., Imbens, G.W. and Wooldridge, J., 2017. When should you

adjust standard errors for clustering? (No. w24003). National Bureau of Economic

Research. https://www.nber.org/papers/w24003

http://jhr.uwpress.org/content/50/2/317.refs
https://www.nber.org/papers/w24003
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Introduction

� In a simple experiment the average treatment effect is the difference in sample

means between the treatment and the control group

� This is the OLS coefficient of β in the regression

Yi = α+ βTi + εi

31



Regression analysis of OLS

X ′X = pN

(
1
p 1

1 1

)

(
X ′X

)−1
=

1

N(1− p)

(
1 −1

−1 1
p

)
And

V

(
α̂

β̂

)
= σ2(X ′X )−1

32



Statistical power

How many observations are enough?

Definition
The power of the design is the probability that, for a given effect size and a given

statistical significance level, we will be able to reject the hypothesis of zero effect

33



Statistical power

How many observations are enough?

Definition
The power of the design is the probability that, for a given effect size and a given

statistical significance level, we will be able to reject the hypothesis of zero effect
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Statistical power

� Is the unit of treatment the same as the unit of analysis? Or, is the

treatment to be administered to a ‘cluster’ of units?

� Examples of individual randomizations:

� Individuals who are given mobile phones to induce them to use an m-banking

platform

� Farmers individually provided with improved agricultural inputs

� Students admitted to an elite school by a lottery process

34
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Randomizing at the Unit of Analysis

� The estimate of treatment effect is β̂ in the regression

Yi = α+ βTi + εi

� The mean of β̂ is β (the true effect)

� The variance of β̂ is V (β̂) = σ2

p(1−p)N

� σ2 is the variance of the outcome (Yi )

� p is the proportion of treated units

� N is the number of observations

36



Randomizing at the Unit of Analysis

� We are generally interested in testing the null hypothesis (H0) that the effect of

the program is equal to zero against the alternative that it is not

� The significance level, or size, of a test represents the probability of a type I

error, i.e., the probability we reject the hypothesis when it is in fact true

� The power of the test the probability that we reject H0 when it is in fact false

We will constantly use the fact that:

β̂ ∼ N

(
β,

σ2

p(1− p)N

)
We often normalize the outcome and present results in terms of SD (so σ2 = 1).
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Significance level - Assume null is true (no effect)
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Significance level - Assume null is true (no effect)
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Power when the effect is β1

For a true effect size β this is the fraction of the area under this curve that falls to the

right of the critical value tα
2
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Power when the effect is β = 0.1
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Power when the effect is β = 0.1
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Power when β = 0.1, N = 4, and p = 0.5
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Power when β = 0.1, N = 100, and p = 0.5
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Power when β = 0.1, N = 1, 000, and p = 0.5
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Power when β = 0.2, N = 1, 000, and p = 0.5
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Power when the effect is β = 0.3, N = 1, 000, and p = 0.5
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Power when the effect is β = 0.3, N = 1, 000, p = 0.5, and σ = 0.7
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Statistical power and clusters

� All these quantities we just looked at are related

� To achieve a power κ, it must therefore be that

β > (tα
2
+ t1−κ)σβ̂

47



Minimum detectable effect

� The minimum detectable effect size for a given power (κ), significance level

(α), sample size (N), and portion of subjects allocated to treatment group (p) is

given by

MDE = (tα
2
+ t1−κ)

√
σ2

p(1− p)N

48



Randomizing at the Unit of Analysis

� The standard is to set κ = 0.8 or κ = 0.9

� The standard is to set α = 0.05 or α = 0.1

� The variance of outcomes σ2 is typically the raw variance of the dependent

variable you intend to use

� The sample size N is the number of observations in the study (you can change

this)

� The fraction of the sample treated is p (you can change this)
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Effect vs Power
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Sample size vs MDE
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How should you think about the MDE?

� What is the treatment effect below which it is pointless to implement the program

and/or study its effect?

� If sample size is too small, you’re likely to end up with an insignificant result for

something that actually matters
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Cluster Randomized Experiments

� Is the unit of treatment the same as the unit of analysis? Or, is the treatment

to be administered to a ‘cluster’ of units?

� Examples of clustered randomizations:

� Changing the business practices at a firm level and studying the impact on individual

employees

� Providing schools with new textbooks and studying the effect on individual student

performance

� Offering a new financial service to all residents in a village and studying the impact

on micro enterprise outcomes

� In a clustered randomization the power of the study is coming partly from the

number of individuals in the study, and partly from the number of clusters in the

study
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Cluster Randomized Experiments

� Is the unit of treatment the same as the unit of analysis? Or, is the treatment

to be administered to a ‘cluster’ of units?

� Examples of clustered randomizations:

� Changing the business practices at a firm level and studying the impact on individual

employees

� Providing schools with new textbooks and studying the effect on individual student

performance

� Offering a new financial service to all residents in a village and studying the impact

on micro enterprise outcomes

� In a clustered randomization the power of the study is coming partly from the

number of individuals in the study, and partly from the number of clusters in the

study
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Cluster Randomized Experiments

� The estimate of treatment effect is β̂ in the regression

Yij = α+ βTj + ωj + εij

� σ2 is the variance of the outcome (εij)

� τ2 is the variance of the outcome (ωj)

� p is the proportion of treated units

� n is the number of observations in each cluster

� J is the number of clusters

� The variance of β̂ is σ
β̂
= nτ2+σ2

p(1−p)nJ
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Cluster Randomized Experiments

� Often, expressed using the intra-cluster correlation (ICC) ≡ τ2

τ2+σ2

� The variance of β̂ is V (β̂) = σ2 ρ+ (1−ρ)
n

p(1−p)J (comes from the cluster SE formula we

saw)

� The ICC can be obtained using loneway in stata
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Minimum detectable effect

� The minimum detectable effect is given by

MDE = (tα
2
+ t1−κ)σ

√
ρ+ (1−ρ)

n

p(1− p)J
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Power Calculations Rules of Thumb

� For an individual-level experiment, 200-300 observations will typically be sufficient

to detect a reasonable effect size

� For a clustered experiment, a low ICC (0.1) would need 50-100 clusters and > 5

observations per cluster to detect a moderate effect. As the ICC gets larger, the

number of clusters has to go up

� For very complicated research designs, you can always use simulations to get the

power of the design
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Interpreting a regression output

� Great, you ran a regression

� Let’s assume it has a causal interpretation (big if)

� How do you interpret the results?
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Warning!

� Be careful not to confuse percent with percentage point

� A change from 10% to 13% is a rise of 3 (13-10) percentage points

� This is not equal to a 3% change; rather, it’s a 30%=10013−10
10 increase
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Level-level Regression

� If you have a level-level regression

yi = β0 + β1xi + ui

� If you increase x by one, we expect y to change by β1
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An example

� A regression of wages on: Age (in years), race (black=1) and IQ percentile (0-100)

� For every year, we expect wages to change by β̂age USD

� On average, we expect wages to higher/lower for blacks by β̂female USD than for

non-blacks

� For every percentage point increase in IQ, we expect wages to change by β̂IQ

USD
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Simulations!

l i b r a r y ( woo l d r i d g e )

l i b r a r y ( s t a r g a z e r )

data ( ”wage2” )

wage2$ IQ P e r c e n t i l e=q u a n t i l e ( wage2$IQ , seq ( 0 , 1 , 0 . 1 ) )

l e v l e v=lm (wage ˜ IQ P e r c e n t i l e + age + black , data = wage2 )

summary ( l e v l e v )

s t a r g a z e r ( l e v l e v , t i t l e=” Leve l=Le v e l ” , a l i g n=TRUE,

type=” l a t e x ” , omit . t a b l e . l a y o u t=”=!a” ,

out=” Le c t u r e s / t a b l e s / l e v l e v . t e x ” ,

c o v a r i a t e . l a b e l s=c ( ”IQ ( p e r c e n t i l e ) ” , ”Age” , ”Black(=1 ) ” ) ,

d i g i t s=2 , d i g i t s . e x t r a=1 , no . space=T, co lnames=F ,

dep . va r . c a p t i o n=”” , dep . va r . l a b e l s=”Wage” ,

column . sep . width=”0 pt ” , heade r=F ,

omit . s t a t=c ( ” ad j . r s q ” , ” r s q ” , ” f ” , ” s e r ” ) )
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Level-Level

Wage

IQ (percentile) 0.13

(0.56)

Age 19.47∗∗∗

(4.12)

Black(=1) −248.08∗∗∗

(38.30)

Constant 332.49∗∗

(150.27)

Observations 935

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Log-level Regression

� If you have a log-level regression

ln(yi ) = β0 + β1xi + ui

� If you increase x by one, we expect y to change by 100β1 percent

� Technically, %∆y = 100(eβ1 − 1)

� But %∆y = 100(eβ1 − 1) ≈ 100β1 for values −0.1 < β1 < 0.1

� You can only include observations for which yi > 0

� Only do it if this doesn’t introduce bias into your sample

� In general, only do it if yi > 0 for almost all i

� Adding 1 or 0.1, or 100 is not a valid fix
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An example

� A regression of ln(wages) on: Age (in years), race (black=1) and IQ percentile

(0-100)

� For every year, we expect wages to change by 100β̂age percent

� On average, we expect wages to be higher/lower for blacks by 100β̂female percent

than for non-blacks

� For every percentage point increase in IQ, we expect wages to change by

100β̂IQ percent
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Simulations!

l o g l e v=lm ( l o g (wage ) ˜ IQ P e r c e n t i l e + age + black , data = wage2 )

summary ( l o g l e v )

s t a r g a z e r ( l o g l e v , t i t l e=”Log=Le v e l ” , a l i g n=TRUE,

type=” l a t e x ” , omit . t a b l e . l a y o u t=”=!a” ,

out=” Le c t u r e s / t a b l e s / l o g l e v . t e x ” ,

c o v a r i a t e . l a b e l s=c ( ”IQ ( p e r c e n t i l e ) ” , ”Age” , ”Black(=1 ) ” ) ,

d i g i t s=2 , d i g i t s . e x t r a=1 , no . space=T, co lnames=F ,

dep . va r . c a p t i o n=”” , dep . va r . l a b e l s=” l n (Wage) ” ,

column . sep . width=”0 pt ” , heade r=F ,

omit . s t a t=c ( ” ad j . r s q ” , ” r s q ” , ” f ” , ” s e r ” ) )
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Log-Level

ln(Wage)

IQ (percentile) −0.000

(0.001)

Age 0.02∗∗∗

(0.004)

Black(=1) −0.29∗∗∗

(0.04)

Constant 6.13∗∗∗

(0.16)

Observations 935

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

73



Level-log Regression

� If you have a log-level regression

yi = β0 + β1 ln(xi ) + ui

� If you increase x by one percent (NOT BY ONE PERCENTAGE POINT!), we

expect y to change by β1
100 units of y

� You can only include observations for which xi > 0

� Only do it if this doesn’t introduce bias into your sample

� In general, only do it if xi > 0 for almost all i

� Adding 1 or 0.1, or 100 is not a valid fix

74



An example

� A regression of wages on: ln(Age), race (black=1) and ln(IQ) (IQ is the

percentile)

� For an increase in 1 percent in age, we expect wages to change by
β̂age

100 USD

� On average, we expect wages to be higher/lower for blacks by β̂female
100 USD than

for non-blacks

� For an increase in 1 percent in the IQ percentile (that is, a percent change in

percentage points), we expect wages to change by
β̂IQ

100 USD
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Simulations!

l e v l o g=lm (wage ˜ l o g ( IQ P e r c e n t i l e ) + l og ( age ) + black , data = wage2 )

summary ( l e v l o g )

s t a r g a z e r ( l e v l o g , t i t l e=” Leve l=Log” , a l i g n=TRUE,

type=” l a t e x ” , omit . t a b l e . l a y o u t=”=!a” ,

out=” Le c t u r e s / t a b l e s / l e v l o g . t e x ” ,

c o v a r i a t e . l a b e l s=c ( ” l n ( IQ ( p e r c e n t i l e ) ) ” , ” l n (Age ) ” , ”Black(=1 ) ” ) ,

d i g i t s=2 , d i g i t s . e x t r a=1 , no . space=T, co lnames=F ,

dep . va r . c a p t i o n=”” , dep . va r . l a b e l s=”Wage” ,

column . sep . width=”0 pt ” , heade r=F ,

omit . s t a t=c ( ” ad j . r s q ” , ” r s q ” , ” f ” , ” s e r ” ) )
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Level-Log

Wage

ln(IQ (percentile)) 13.98

(49.60)

ln(Age) 648.41∗∗∗

(136.38)

Black(=1) −247.97∗∗∗

(38.29)

Constant −1, 340.20∗∗

(536.08)

Observations 935

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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log-log Regression

� If you have a log-level regression

ln(yi ) = β0 + β1 ln(xi ) + ui

� If you increase x by one percent (NOT BY ONE PERCENTAGE POINT!), we

expect y to change by β1 percent

� You can only include observations for which xi > 0 and yi > 0

� Only do it if this doesn’t introduce bias into your sample

� In general, only do it if xi > 0 and yi > 0 for almost all i

� Adding 1 or 0.1, or 100 is not a valid fix
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An example

� A regression of ln(wages) on: ln(Age), race (black=1) and ln(IQ) (IQ is the

percentile)

� For an increase in one percent in age, we expect wages to change by β̂age percent

� On average, we expect wages to be higher/lower for blacks by β̂female percent

than for non-blacks

� For an increase in one percent in the IQ percentile (that is, a percent change in

percentage points), we expect wages to change by β̂IQ percent
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Simulations!

l o g l o g=lm ( l o g (wage ) ˜ l o g ( IQ P e r c e n t i l e ) + l og ( age ) + black , data = wage2 )

summary ( l o g l o g )

s t a r g a z e r ( l o g l o g , t i t l e=”Log=Le v e l ” , a l i g n=TRUE,

type=” l a t e x ” , omit . t a b l e . l a y o u t=”=!a” ,

out=” Le c t u r e s / t a b l e s / l o g l o g . t e x ” ,

c o v a r i a t e . l a b e l s=c ( ” l n ( IQ ( p e r c e n t i l e ) ) ” , ” l n (Age ) ” , ”Black(=1 ) ” ) ,

d i g i t s=2 , d i g i t s . e x t r a=1 , no . space=T, co lnames=F ,

dep . va r . c a p t i o n=”” , dep . va r . l a b e l s=” l n (Wage) ” ,

column . sep . width=”0 pt ” , heade r=F ,

omit . s t a t=c ( ” ad j . r s q ” , ” r s q ” , ” f ” , ” s e r ” ) )
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Log-Level

ln(Wage)

ln(IQ (percentile)) −0.001

(0.05)

ln(Age) 0.69∗∗∗

(0.14)

Black(=1) −0.29∗∗∗

(0.04)

Constant 4.40∗∗∗

(0.56)

Observations 935

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Leverage

� Remember that

β̂ =
cov(x , y

v(x)
=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2

� We can rewrite as:

β̂ =
(x1 − x)(y1 − y) +

∑n
i=2(xi − x)(yi − y)

(x1 − x)2 +
∑n

i=2(xi − x)2

� If xi = x , then β̂ =
∑n

i=2(xi−x)(yi−y)∑n
i=2(xi−x)2

� The first observation doesn’t affect the outcome
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Leverage: Big Picture

� That was an extreme case (xi = x) but generally speaking:

� The farther an observation is from x , the more it affects the OLS estimator

� This is called “leverage”

� See a recent discussion on Twitter of economist arguing about this

https://twitter.com/arindube/status/1279919438419165184?s=20
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The perils of p-hacking

https://xkcd.com/882/
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What if your outcome is a dummy?

� All we have talked about still holds

� Logit/Probit have very strong assumptions (the shape of the error term)

� Regression is more robust in general
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An example

� A regression of employment (=1 for employed, =0 for unemployed)) on: Age,

gender (female=1) and IQ (percentile)

� For an increase in 1 year of age, we expect the probability of employment to

change by 100β̂age percentage points

� On average, we expect the probability of employment to be higher for females by

100β̂female percentage points than for males

� For an increase in 1 percentage point in IQ , we expect the probability of

employment to change by 100β̂IQ percentage points
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What if your outcome is Ordinal/Categorical?

� Then you cannot do OLS

� OLS assumes a metric

� Distance between Y = 1 and Y = 2 is the same as Y = 2andY = 3

� Unclear in what units β is
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What can you do?

� Transform your data to binary

� Do order probit/logit

96


	Error structure
	Statistical power
	A few things that don't get enough attention

